Normális eloszlás

A statisztikában az egyik legfontosabb és leggyakrabban alkalmazott eloszlás a normális eloszlás. A normális eloszlással azokat a jelenségeket lehet jól modellezni, amelyeknek a kialakulását nagyon sok, egyenként kis súllyal szereplő tényező alakítja ki. A nagyon sok azt jelenti, hogy gyakorlatilag nem tudjuk számba venni őket. Az ilyen típusú jelenségek sokszor additív tulajdonsággal rendelkeznek, ami azt jelenti, hogy a hatások összegződnek, és ez alakítja ki a végső értéket.

Normális eloszlástól különböző eloszlások is modellezhetők normál eloszlással bizonyos feltételek mellett. Erre a dobókocka jó példa. Egyetlen kockával a dobások értékei egyenletes eloszlást mutatnak, hiszen 1-6 értékek előfordulási valószínűsége megegyezik, mindegyiké egyhatod. Amennyiben több dobókockával játszunk egyszerre, a dobások összege kezdi közelíteni a normál eloszlást, mivel a jelenség kialakulását már nem csak egy tényező befolyásolja. Hat dobókockával csak egyféleképpen tudunk hatot és harminchatot dobni, tehát ezeknek a legkisebb a valószínűsége, azaz ezeknek lesz a legkisebb az előfordulási gyakorisága. Tizennyolcat sokféle kombinációban dobhatunk, ezért ennek a gyakoriság nagy lesz, azaz nagy valószínűséggel ilyen értéket fogunk kapni a következő dobásnál.Ez a modell jól leírja a mérési értékeknek a középérték (várható érték) körüli szóródását. Jelölése N(μ, σ). Két paraméterrel rendelkezik: a várható értékkel és szórással. Ezen két paraméter ismeretében az alapsokaság elemei előállíthatók, a további vizsgálatok során ezért nincs szükség az eredeti alapadatokra.

A különböző tulajdonságú jelenségek összehasonlítását nagyban megkönnyíti, ha az eredeti normál eloszlást transzformáljuk, és eltüntetjük a mértékegységét. A skálatranszformáció során két dolgot csinálunk: eltoljuk a középértéket nullára és a szórás egységnyire konvertáljuk. Ezt az eljárást normalizálásnak nevezzük. Standard normális eloszlás jele: N(0, 1)

A normális eloszlás göbéjét először egy francia matematikus, Abraham de Moivre fedezte fel és közölte le 1733-ban. A normális eloszlást tudományosan két matematikus-csillagász, a francia Pierre-Simon Laplace és a német Carl Friedrich Gauss alapozta meg. Többen úgy vélik, hogy Laplace hozzájárulása a normális eloszlás tulajdonságainak tisztázásához jelentősebb volt, mint Gaussé, mégis Gauss után nevezték el a normális eloszlást Gauss eloszlásnak, miután Gauss volt az első, aki a normális eloszlást égitestek mozgására alkalmazta.
A természetben nagyon sok mért paraméter normális eloszlással írható le, mint például az egyének magassága, vérnyomása, súlya, stb. A normális elnevezés is arra utal, hogy a mért adatainktól ezt várjuk, mert ez a természetes viselkedésük.
Az X valószínűségi változó normális eloszlású pontosan akkor, ha sűrűségfüggvénye:

, ahol μ várható értékű (középérték), σ szórású.

Az eloszlásfüggvény:

A sűrűségfüggvény grafikonját alakja miatt haranggörbének is nevezik.

Önnek mi a véleménye?